GOLDSCHMIDT'S 2-SIGNALIZER FUNCTOR THEOREM

BY

HELMUT BENDER'

ABSTRACT

A solvable A-signalizer functor θ assigns to any non-identity element x of the abelian 2-subgroup A of the finite group G an A-invariant solvable 2'-subgroup $\theta(C_G(x))$ of $C_G(x)$ such that $\theta(C_G(x)) \cap C_G(y) \subseteq \theta(C_G(y))$ for all $x, y \in A^*$. θ is called complete if G has a solvable A-invariant 2'-subgroup $K = \theta(G)$ such that $C_K(x) = \theta(C_G(x))$ for every $x \in A^*$.

This note contains an alternate proof of the completeness theorem below.

1. Introduction

The fundamental concept of a signalizer functor is due to Gorenstein. His results, see [5], [6], [7], [8], precede the following

THEOREM OF GOLDSCHMIDT ([3]). Let G be a (finite!) group and A an abelian 2-subgroup of rank $r(A) \ge 3$.

Then any solvable A-signalizer functor θ on G is complete.

We show that the "maximal subgroup approach" underlying some other work of the author also yields a proof of this theorem, thereby answering a question raised in [8, p. 108] affirmatively.

The general signalizer functor theorem (replace 2 by an arbitrary prime r) has recently been proved by Glauberman [1]. Before, Goldschmidt [2] and Martineau [9] had done the cases $r(A) \ge 4$ and $\theta(C_G(A)) = 1$, respectively.

For notation and a general discussion of signalizer functors the reader is referred to [2].

Here are the general facts we need, up to the ZJ-theorem all of a very elementary nature:

Received February 23, 1975

[†]This research originated in September 1973 while the author was visiting the University of Tel Aviv on a grant from the Deutsche Forschungsgemeinschaft.

- 1.1. Standard action properties of a p-group P acting on a p'-group K:
- (i) [P, K] is a P-invariant normal subgroup of K satisfying $K = [P, K]C_K(P)$ and [P, K] = [P, [P, K]];
- (i') if P centralizes a centralizer-closed (i.e. $C_K(U) \subseteq U$) normal (or just subnormal) subgroup U of K, then P centralizes K;
 - (i'') if $X^P = X \triangleleft K = XY$ with $Y = Y^P$, then $C_K(P) = C_X(P)C_Y(P)$;
 - (ii) if P is abelian, then $K = \langle C_K(P_0) | P/P_0 | cyclic \rangle$;
 - (ii') if $T \subseteq P$, P abelian, then $[T, K] = \langle [T, C_K(P_0)] | P/P_0 \text{ cyclic} \rangle$;
- (iii) any P-invariant q-subgroup (q a prime) of K lies in a P-invariant S_q -subgroup of K, and all such S_q -subgroups are conjugate under $C_K(P)$; in case K is solvable, this holds for any set q of primes;
- (iv) if |P| = 2 and $C_K(P) = 1$, then K is abelian and $k^* = k^{-1}$ for $u \in P^*$ and every $k \in K$.
 - 1.2. Standard properties of a solvable group H, with $\pi = \pi(F(H))$:
 - (i) $C_H(F(H)) \subseteq F(H)$;
 - (ii) $O_{p'}(C_H(P)) \subseteq O_{p'}(H)$ for any p-subgroup P;
 - (iii) if $C_{F(H)}(U) \subseteq U \subseteq F(H)$, then $C_H(U)$ is a (nilpotent) π -group.

LEMMA 1.3. Let t be an involution acting on the solvable 2'-group H. Let $C_H(t) \subseteq K = K' \subseteq H$. Then $[t, F(K)] \subseteq F(H)$.

For the next result, basic for us, it is convenient to have some additional notation: For solvable subgroups M and K of a group G write M * K, M * * K, or M * * * K, according as (*), (**), or both holds.

- (*) $N_{\kappa}(X) \subset M$ whenever $1 \neq X$ char M,
- (**) K contains a centralizer-closed subgroup of F(M).

PROPOSITION 1.4. Assume M * * * K. Let $\pi = \pi(F(M))$ and $U = F(M) \cap K$.

- (i) $O_{\pi'}(K) \cap M = 1$;
- (ii) $U \subseteq O_{\pi',F}(K)$: = $F(K \mod O_{\pi'}(K))$ unless $|\pi| = 1$;
- (iii) if we also have K * * * M, then M = K unless F(M) and F(K) are p-groups for some prime p.

GLAUBERMAN ZJ-THEOREM ([4], theor. 8.2.11). Let H be solvable, F(H) a p-group, $p \ge 5$ or $2 \not\in \pi(H)$, and $H_p \in \operatorname{Syl}_p(H)$. Then $Z(J(H_p)) \triangleleft H$.

In the following, θ is an A-signalizer functor on G, with $r(A) \ge 3$. Subgroups in $\Pi_{\theta}(A)$ we also call θ -subgroups. By definition of $\Pi_{\theta}(A)$, A-invariant subgroups of θ -subgroups are θ -subgroups.

Thompson Transitivity Theorem ([2], theor. 3.1). For any prime q, $\theta(C_G(A))$ is transitive on $H_{\theta}^*(A,q)$.

- 1.5. (A corollary of 1.1.i"). If $X, Y \in \mathcal{H}_{\theta}(A), X^Y = X$, then $XY \in \mathcal{H}_{\theta}(A)$.
- 1.6. (Glauberman [1]). Let θ be solvable, and π a set of primes. Then, for any $x \in A^*$, $K := \theta(C_G(x))$ has a unique maximal $\theta(C_G(A))$ -invariant (i.e. $C_K(A)$ -invariant) π -subgroup $\theta_{\pi}(C_G(x))$, and the function θ_{π} thus defined is an A-signalizer functor on G.
- 1.7. Let $\bar{G} = G/X$ with X a normal θ -subgroup. Then an \bar{A} -signalizer functor $\bar{\theta}$ on \bar{G} is defined by $\bar{\theta}(C_{\bar{G}}(\bar{a})) := \overline{\theta(C_{\bar{G}}(a))}, a \in A^*$, and

$$\operatorname{H}_{\bar{\theta}}(\bar{A}) = \{ \bar{Y} \mid Y \in \operatorname{H}_{\theta}(A) \} = \{ \bar{K} \mid X \subseteq K \in \operatorname{H}_{\theta}(A) \}.$$

COMMENTS ON THE ABOVE: 1.1 and 1.2 should be clear and are essentially contained in [4].

On Lemma 1.3: For the proof of $P := [t, O_p(K)] \subseteq O_p(H)$ let $O_p(H) = 1$. Then $C_{F(H)}(t) \subseteq U := C_{F(H)}(P)$, whence t inverts $N_{F(H)}(U)/U$, and hence [t, P] = P centralizes this factor group, consequently centralizing $N_{F(H)}(U)$.

On Proposition 1.4: (i) follows from (1.2.iii) because $O_{\pi'}(K) \cap M$ centralizes U. Apply (*) with $X = Z(O_p(M))$, $p \in \pi$, to get $U_{p'} \subseteq O_{p'}(K)$, and likewise $U_p \subseteq O_{q'}(K)$, $p \neq q \in \pi$, via (1.2.ii). Then $[U_p, O_{p'}(K)] \subseteq O_{\pi'}(K)$, so that $O_{p'}(K) \subseteq O_{\pi'}(K)C_K(U_p)$ and hence $O_{\pi'}(K)U_{p'} \triangleleft O_{p'}(K)$ which gives (ii). So let K ***M. Then $\pi(F(M)) = \pi(F(K))$, by (i). Let $|\pi| \neq 1$. Then (ii) yields $U \subseteq F(K)$, hence $F(K) \subseteq M$, by (*). By symmetry, $F(M) \subseteq K$, hence even F(M) = F(K). Apply (*).

On the Transitivity Theorem: Its proof requires only (1.5), not the less obvious Lemma 2.7 in [2].

On (1.6): This every useful observation of Glauberman is immediate from (1.1.iii). It has replaced a less elementary tool in an earlier version of this note.

Finally, (1.7) is a straightforward consequence of $C_{\bar{G}}(\bar{a}) = \overline{C_G(a)}$ and (1.5). See also Lemma 2.6 and 5.1 in [2].

2. The minimal counterexample G

We begin with our proof of Goldschmidt's theorem, proceeding by contradiction and induction on $|G| + |\pi(\theta)|$. By minimality of G,

2.1 any proper subgroup $H \supseteq A$ of G has a unique maximal θ -subgroup $\theta(H)$, equal to $\langle H \cap K | K \in \mathcal{H}_{\theta}(A) \rangle$.

We want to apply this to normalizers of non-identity θ -subgroups, and therefore need that

2.2. $1 \neq X \in \mathcal{H}_{\theta}(A)$ implies $N_G(X) \subset G$.

PROOF. Suppose $X \triangleleft G$. Then, in the notation of (1.7), we have $|M_{\delta}^*(A)| = |M_{\delta}^*(\bar{A})|$, and, by minimality of G, $|M_{\delta}^*(\bar{A})| = 1$.

2.3. For $M \in \mathcal{U}^*(A)$ and $K \in \mathcal{U}_{\theta}(A)$ we have M * K. More explicitly, $1 \neq X = X^A \triangleleft M$ implies $N_K(X) \subseteq \theta(N_G(X)) = M$.

This is immediate from the above, and is our main starting point. Next we consider the set A_0 of involutions $t \in A$ such that $\theta(C_G(t)) \notin H^*(A)$. This means that some $\theta(C_G(t))$ -invariant θ -subgroup U_t is not centralized by t. Choose U_t as small as possible, and let

$$\theta(N_G(U_t)) \subseteq M_t \in \Pi^*_{\theta}(A)$$
 and $F_t := F(M_t)$.

LEMMA 2.4. Let $t \in A_0$. (i) U_t equals $[t, U_t]$, is nilpotent, and is centralized by $C_{E_t}(t)$;

(ii) U_t lies in F_t , and for any $H \in \mathcal{H}_{\theta}(A)$ we have $[t, H \cap F_t] \subseteq F(H)$.

PROOF. Minimal choice of U_t yields $U_t = [t, U_t] = F(U_t) = N_{U_t}(C_{F_t}(t))$, see (1.1), and $[t, U_t] = U_t$ then centralizes $C_{F_t}(t)$.

As U_t is a nilpotent subgroup of M_t invariant under $\theta(C_G(t)) = C_{M_t}(t)$, and since $C_H(t) \subseteq \theta(C_G(t)) \subseteq M_t$, (ii) is immediate from Lemma 1.3.

LEMMA 2.5. Let $t \in A_0$, $1 \neq X = X^A \subseteq C_{F_t}(t)$, and $\theta(N_G(X)) \subseteq H \in H^*_{\theta}(A)$. Then $H = M_t$.

PROOF. By choice of H, $M_t ** H$ and $M_t * H$, see (2.3). By Lemma 2.4, $U_t \subseteq F(H)$, so that $N_H(U_t) \subseteq \theta(N_G(U_t)) \subseteq M_t$ gives $H ** M_t$.

Now we prove that more generally $M_1 * * * M_2 * * * M_1$ with $M_i \in H^*_{\theta}(A)$ and $\theta(C_G(A)) \subseteq M_1$ implies $M_1 = M_2$.

Proposition 1.4.iii leaves us with the case where both $F(M_i)$ are p-groups. Let $P_i = P_i^A \in \operatorname{Syl}_p(M_i)$ and $P_i \subseteq Q_i \in \mathcal{H}^*_{\theta}(A, p)$.

By the ZJ-Theorem, $1 \neq X_i := Z(J(P_i)) \triangleleft M_i$, whence $N_K(X_i) \subseteq M_i$ for any $K \in \mathcal{H}_{\theta}(A)$, see (2.3).

In particular, $N_{Q_i}(X_i) \subseteq P_i$ and hence $P_i = Q_i$.

By the Transitivity Theorem, Q_1 and Q_2 are conjugate under $\theta(C_G(A))$, a subgroup of M_1 . Thus $X_1 = X_2$, forcing $M_1 = M_2$.

Lemma 2.6. If such an involution $t \in A_0$ exists, then some non-cyclic subgroup B of A centralizes a θ -subgroup $X \neq 1$ such that $X \subseteq F(H)$ whenever $X \subset H \in \mathcal{H}_{\theta}(A)$.

PROOF. (1.2.ii) yields a subgroup B of A with A/B cyclic such that $C_{F_0}(B) \not\subseteq C_{F_0}(t)$. Let $X := [t, C_{F_0}(B)]$ and apply Lemma 2.4.ii.

LEMMA 2.7. $\theta(C_G(a)) \in \mathcal{H}^*(A)$ for some involution $a \in A$.

PROOF. Suppose false. Then the above applies to any involution t of A. Let B and X be as in Lemma 2.6. Let $\theta(N_G(X)) \subseteq H \in \mathcal{H}^*_{\theta}(A)$. Then Lemma 2.5 yields $H = M_t$ for each involution $t \in B$, contrary to

REMARK 2.8. If $H \in \mathcal{U}_{\theta}(A)$, and B is a non-cyclic subgroup of A, then $\theta(C_G(b)) \not\subset H$ for some $b \in B$.

Otherwise, $K = \langle C_K(b) | b \in B^* \rangle \subseteq H$ for any $K \in \mathcal{H}_{\theta}(A)$, by (1.1.ii).

3. An application of the Glauberman signalizer functors θ_{π}

In this section, independent of the assumption that A is a 2-group, we prove

LEMMA 3.1. $C_A(M) = 1$ for any $M \in H^*_{\theta}(A)$.

LEMMA 3.2. $C_A(P) = 1$ for any $P \in H^*(A, p)$, $p \in \pi(\theta)$.

Lemma 3.1 contradicts Lemma 2.7 and is a corollary of Lemma 3.2: With $p \in \pi(F(M))$, $O_p(M) \subseteq P \in \mathcal{H}^*_{\theta}(A, p)$, and $T := C_A(M)$ we have $N_P(O_P(M)) \subseteq M \subseteq C_G(T)$, hence $P = C_P(T)$, see (1.1.i'), as required.

For the proof of Lemma 3.2 suppose $T := C_A(P) \neq 1$.

The Transitivity Theorem yields $\langle H_{\theta}(A, p) \rangle \subseteq C_G(T)$, whence, for any $H \in H_{\theta}(A)$, T centralizes $F(H/O_p(H))$ and therefore centralizes $H/O_p(H)$, see (1.2.i) and (1.1.i'). This means $[T, H] \subseteq O_p(H)$.

By minimality of $\pi(\theta)$, the Glauberman signalizer functor $\theta_{p'}$ defined in (1.6) is complete. This defines the θ -subgroup $K := \theta_{p'}(G)$, containing every $\theta(C_G(A))$ -invariant p'-subgroup in $H_{\theta}(A)$. We collect:

$$[T, H] \subseteq O_{\mathfrak{p}}(H) \subseteq K \in H_{\theta}(A)$$
 whenever $\theta(C_{G}(A)) \subseteq H \in H_{\theta}(A)$.

This implies $[T, C_K(b)] = [T, \theta(C_G(b))]$ for any $b \in A^*$. In particular, $[T, C_K(b)]$ is invariant under $C_{\theta(C(T))}(b) = C_{\theta(C(b))}(T)$.

Let $T \subseteq B \subseteq A$ with B non-cyclic. The subgroups $[T, C_{\kappa}(b)]$, $b \in B^*$, are $C_{\theta(C(T))}(B)$ -invariant, as we just have seen, and by (1.1.ii') they generate [T, K].

Thus $C_{\theta(C(T))}(B)$ normalizes [T, K]; and since $\theta(C(T))$ is generated by such subgroups (by 1.1.ii and since $r(A) \ge 3$), it follows that $\theta(C(T))$ normalizes [T, K].

Hence $M := [T, K]\theta(C(T)) \in \mathcal{U}_{\theta}(A)$, see (1.5).

Thus $H = [T, H]C_H(T) \subseteq M$ whenever $\theta(C(A) \subseteq H \in \mathcal{H}_{\theta}(A))$.

In particular, $\theta(C_G(b)) \subseteq M$ for any $b \in A^*$, a contradiction.

REFERENCES

- 1. G. Glauberman, On solvable signalizer functors in finite groups, (to appear).
- 2. D. Goldschmidt, Solvable signalizer functors on finite groups, J. Algebra 21 (1972), 137-148.
- 3. D. Goldschmidt, 2-signalizer functors on finite groups, J. Algebra 21 (1972), 321-340.
- 4. D. Gorenstein, Finite Groups, Harper and Row, New York, 1968.
- 5. D. Gorenstein, On the centralizers of involutions in finite groups, J. Algebra 11 (1969), 243-277.
- 6. D. Gorenstein, The flatness of signalizer functors on finite groups, J. Algebra 13 (1969), 509-512.
- 7. D. Gorenstein, On the centralizers on involutions in finite groups II, J. Algebra 14 (1970), 350-372.
- 8. D. Gorenstein, Centralizers of involutions in finite simple groups, in Finite Simple Groups, ed. M. B. Powell and G. Higman, Academic Press, London, 1971.
- 9. P. Martineau, Rank 3 signalizer functors on finite groups, Bull. London Math. Soc. 4 (1972), 161-162.

MATHEMATISCHES SEMINAR DER UNIVERSITÄT

23 KIEL

FEDERAL REPUBLIC OF GERMANY